A Modular Method for the Efficient Calculation of Ballistic Transport Through Quantum Billiards
نویسندگان
چکیده
We present a numerical method which allows to efficiently calculate quantum transport through phase-coherent scattering structures, so-called “quantum billiards”. Our approach consists of an extension of the commonly used Recursive Green’s Function Method (RGM), which proceeds by a discretization of the scattering geometry on a lattice with nearest-neighbour coupling. We show that the efficiency of the RGM can be enhanced considerably by choosing symmetry-adapted grids reflecting the shape of the billiard. Combining modules with different grid structure to assemble the entire scattering geometry allows to treat the quantum scattering problem of a large class of systems very efficiently. We will illustrate the computational challenges involved in the calculations and present results that have been obtained with our method.
منابع مشابه
Modular recursive Green’s function method for ballistic quantum transport
A modification of the standard recursive Green’s function method for quantum transport through microstructures is presented which is based on the decomposition into separable substructures. The Green’s functions for these modules are joined by discretized Dyson equations. Nonseparable structures can thereby be calculated with the help of a few recursions with high accuracy. We apply this method...
متن کاملQuantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls
The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls...
متن کاملشبیه سازی اثر بی نظمی و میدان مغناطیسی بر ترابرد کوانتومی نانوساختارهای دو بعدی مدل شده با تقریب تنگابست
In recent years, semiconductor nanostructures have become the model systems of choice for investigation of electrical conduction on short length scales. Quantum transport is studied in a two dimensional electron gas because of the combination of a large Fermi wavelength and large mean free path. In the present work, a numerical method is implemented in order to contribute to the understanding ...
متن کاملSemi Empirical Calculation of Intermolecular Potentials and Transport Properties of Some Binary and Ternary Industrial Refrigerant Mixtures
In this study the intermolecular potential energies of some environment-friendly industrial HFC refrigerants were obtained through the inversion method which is based on the corresponding states principle. These potentials were later employed in calculation of transport properties (viscosity, diffusion, thermal conductivity and thermal diffusion factor) of some binary and ternary refrigerant mi...
متن کاملTunable Fano resonances in transport through microwave billiards.
We present a tunable microwave scattering device that allows the controlled variation of Fano line shape parameters in transmission through quantum billiards. Transport in this device is nearly fully coherent. By comparison with quantum calculations, employing the modular recursive Green's-function method, the scattering wave function and the degree of residual decoherence can be determined. Th...
متن کامل